Masking Does Not Protect Against Fault Attacks

Arnaud.Boscher@spansion.com
Helena.Handschuh@spansion.com
Masking techniques on AES

- Cryptographic algorithms are susceptible to power analysis attacks, i.e. measure power consumption, do some statistical analysis and extract the secret keys.

- Masking: for each AES algorithm execution, add a random vector u to the plaintext bytes, a random vector w to the secret key bytes, and start the computations with u, and w.

- compute the algorithm for both the « masked plaintext » and the « mask » independently

- at the end, add both parts together and recover the correct ciphertext
Example: Boolean masking for AES

• Everything goes fine except for the non-linear Sboxes (table look-up implementation).

• Recompute each Sbox such that $S_u(m \oplus u) = S(m)$.
• Remask with v at the output: $S^v_u (m \oplus u) = S(m) \oplus v$.

• Close-up look on last-round computation on masked state s (ignore Shiftrow here):
 • $c = ((S^v_u (s) \oplus (k \oplus w)) \oplus v) \oplus w$

• Consider 2 different runs with the same plaintext, same key, but different random vectors u,v,w.

• Ciphertexts will be the same.
Effects of a single bit-flip e_j in the masked state s

- Introduce a single bit-flip e_j in masked state s of one of the runs.
- $c = ((S^v_u (s) \oplus (k \oplus w)) \oplus v) \oplus w$
- $c = ((S^v_{u*} (s^*) \oplus (k \oplus w^*)) \oplus v^*) \oplus w^*$
- $c^* = ((S^{v*}_{u*} (s^* \oplus e_j) \oplus (k \oplus w^*)) \oplus v^*) \oplus w^*$

- Add the correct and the faulty ciphertexts.
- $c \oplus c^* = ((S^v_u (s) \oplus (k \oplus w)) \oplus v) \oplus w \oplus ((S^{v*}_{u*} (s^* \oplus e_j) \oplus (k \oplus w^*)) \oplus v^*) \oplus w^*$
- $c \oplus c^* = (S^v_u (s) \oplus v) \oplus (S^{v*}_{u*} (s^* \oplus e_j) \oplus v^*)$

- $c \oplus c^* = S_u(m \oplus u) \oplus S_{u*}((m \oplus u^*) \oplus e_j)$.
- $c \oplus c^* = S_u(m \oplus u) \oplus S_{u*}((m \oplus e_j) \oplus u^*)$.
- $c \oplus c^* = S(m) \oplus S(m \oplus e_j)$

- even though the faulty computation $S(m \oplus e_j)$ never actually took place.
Key Recovery

- \(c \oplus c^* = S(m) \oplus S(m \oplus e_j) \)

- Apply differential cryptanalysis on \(S \) or \(S^{-1} \) and recover one last round subkey byte (a few values may be left here)

- Requires 16 faulty ciphertexts plus their correct versions.

- Plus some exhaustive search or a second faulty ciphertext for each byte since a few different keys remain after the filtering stage.
 - This example requires a very strong and precise fault model

- Can be generalised to weaker fault models, other rounds, other masking techniques but the conclusion remains the same...
 - We have plenty more examples ;-)
Thank you!

Helena.Handschuh@spansion.com